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1 INTRODUCTION

T is a common assumption in the supervised learning

literature that the training and data samples are drawn
using the same probability distribution [1], so that the
expected performance on test samples converges to that
on the training set with an increasing number of samples.
This basic assumption, however, may not be fulfilled in
practice for a variety of reasons. In a setting that requires
extrapolation, we may not be able to take training and
test samples from the same region of space. In a practical
experimental design, we may choose to adjust our sampling
set or procedure based on observations over training data. If
these basic variations are present, we may no longer be able
to assume the same probability distributions for the training
and test samples without suffering performance penalties.

We assume a standard supervised learning framework.
Given a domain of patterns X and labels ), we obtain
training samples
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from a probability distribution Py, (z, y), and test samples

Ze = {(2%F, 95), ..., (2%, ¥y )} C A %V,

from a probability distribution Pt (z, y). We cannot find
a general solution for an estimation problem with two
different distributions Py (z, y) and P (x, y), since the
distributions can be arbitrarily far apart. However, we can
make the simplifying assumption that the conditional dis-
tribution of outputs given inputs is common to the training
and test samples, so that Py (z, y) = P(y| z) Py (x) and
P (2, y) = P (y | ) P () . This setting for density estima-
tion is termed a covariate shift [2].

In this report, we investigate techniques for augmenting
the ERM algorithm using the density-ratio between the
training and test probability densities. This estimate is used
as the measure of the importance of each training sample in
the data domain. Basic learning algorithms can be modified
by weighting the training loss function according to these
importance values, so that highly useful properties such
as consistency and asymptotic unbiasedness are achieved
under a covariate shift.

The report is organized as follows. In Section 2, we re-
view methods of nonparametric probability density estima-
tion, highlighting how the Gaussian kernel is used to extend

these methods in general higher-dimensional settings. As-
suming that the density-ratio has been accurately deterem-
ined, we present the importance-weighted ERM algorithm
in Section 3, and conduct simulations of basic regression
and classification examples to test this algorithm. We offer
a conclusion in Section 4, observing that while performance
improvements are easily obtained with accurate knowledge
of the density-ratio, further research must be done to ensure
robustness in general settings.

2 NONPARAMETRIC PROBABILITY DENSITY ESTI-
MATION

Prior to the advent of modern learning theory, the funda-
mental statistical approach to the learning problem was to
estimates the underlying probability distribution from the
training and data samples, and to use this estimate to obtain
optimal decision boundaries for the given set of samples.
However, probability distribution estimation is difficult in
the settings of the majority of learning problems [1], and
generally leads to highly erroneous results in higher dimen-
sions, where an infeasible number of samples is required
to obtain an accurate estimate. A fundamental principle of
learning theory is to bypass this difficult problem, and to
directly obtain the best classifiers for the dataset. However,
if the training samples are not representative of the data dis-
tribution, we have to reconsider density estimation methods
in a learning framework, in order to mitigate the underlying
discrepancy between the training and test samples.

A common way to estimate probability densities is to
assume we know the functional form of the distribution,
and then to find the maximum likelihood estimate of the
distribution’s sufficient statistics. Given data vectors z, this
method essentially uses the mode of the posterior distribu-
tion g (0 | z) as an estimate for 6. However, this parametric
approach has several important shortcomings [3]. The mode
of a distribution tends to be much more unstable than the
mean or the median, and although the maximum likelihood
estimate is consistent and converges almost surely to the
true parameter value 8* under general assumptions [4], the
result is inaccurate if the number of data points is small.
We also make a strong assumption about the functional
form of the probability density function, which may not
hold in practice, especially in higher dimensions. We there-
fore consider nonparametric probability density estimation



methods in this section, avoiding any assumptions about
the probability densities.

2.1 Kernel Estimators

The most common method used to estimate probability den-
sities of unknown functional form are histograms [3], which
form the basis of more sophisticated extensions. Suppose we
have a random sample z = [z z2 ... Z,] from an unknown
continuous probability density function on [a, b] € R, which
we partltlon asa =ty <t <--- <ty = b We consider
estimators fy; (z) of the form:

fat)=ci, ti <t <tiy1,i=0,...,m—1
fH (b) = Cm—1
wherefH()>Oand]fH t)dt = 1.

If g; is the number of observatlons z; € z falling in the
' interval, we obtain the standard histogram method for
fu by setting the weights c; as:
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The histogram estimator f 1 (z), as outlined in Equations
(1) and (2), has the desirable properties of being a consistent
estimator for the true probability density function f* (z)
[3]. However, this estimator is discontinuous and difficult to
update, thus motivating various generalized kernel estima-
tors that improve upon it in convergence and computational
complexity. The Rosenblatt estimator [5] employs a shifted
histogram for faster convergence to the true distribution,
where the mesh that determines the bin intervals is adjusted
so that each sample point in v lies at the midpoint of a bin.
Given sample points {mJ} the shifted histogram can be
represented as:
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where h,, is a real-valued constant for each n and w (u) is
defined as:
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The key generalization of the histogram method is to
note that different kernels may be used in place of w (u) as
given in Equation 4, yielding the kernel estimator as follows

[6]:
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where the constraints on K are:
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The kernel estimator has the highly desirable properties

of asymptotic unbiasedness and consistency, as proven in
Theorem 1 [3]:

Theorem 1. The kernel estimator is asymptotically unbiased if
hpn, — 0as n — oo, and is consistent if nh,, — 0o as n — 0.

Proof: The asymptotic unbiasedness of the estimator
follows from:

Elf@] =5 [ ( P )y

/ K (y (x — hpy)dy
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where we have used the kernel estimator definition in

Equation (5).
To prove consistency, we first note that:

A 1 1 T —y
Var {fn (x)} = ﬁVar {EK ( ™ )} ,
since Var [z] = 1 Var[z].
It follows that:
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We also note that:

MSE 7, (2)] = £ | (£, (@) - 1 @)']
= Var [fn (f)} + Bias? (fn (:c))
We have proven that both the variance and the bias terms

go to zero. Therefore, MSE [ fn (a:)} — 0,and f, (z) is thus

a consistent estimator for f* (). O

One of the advantages of this estimator formulation
is that it can be extended to arbitrarily many dimensions
with an appropriate kernel. The Gaussian kernel is typically
chosen, although a similar kernel with finite support can
sometimes be easier to implement. One problem is that
kernel estimators are not generally robust against poor
choices of h,,, which is generally determined numerically for
particular cases. The most important concern, however, is
that the convergence rates of histograms are slower than 1,
and that poor estimates are obtained for high-dimensional
problems.



2.2 Density-Ratio Estimation

We have previously mentioned that density estimation is
a more difficult problem than classification, where we just
learn the decision boundaries for a given dataset. In fact,
the density-ratio is an easier quantity to estimate than
the probability densities themselves, and can be directly
applied to the learning problem. Various direct density-
ratio estimation methods have been proposed [7]. Here, we
consider the moment-matching method, which makes very
few assumptions about the underlying distributions.

Given a probability distribution pj, (z) for the data sam-
ples, and a probability distribution p;. (z) for the training
samples, the density-ratio r* (z) is given by:

«
(@) = Liett) ©)
pi (z)

Our goal is to find a good estimator 7 (z) for r* (z). A
naive method would have been to estimate the probabil-
ity distributions separately and to take the ratio directly.
However, division by an estimated quantity often makes
an estimator unreliable. This is a critical problem for a
high-dimensional setting, because density values tend to be
small in these cases, making the density-ratio estimation ill-
conditioned.

We consider the derivation of the moment matching
method of density-ratio estimation, where we use easily
computed sample averages of the training and test data
points to estimate the density-ratio at those points. Given
a one-dimensional random variable X drawn from a proba-
bility distribution with density p% (z), the k™ order moment
of X around the origin is defined as:

E [Xk] = /a:kp} (x)dz (10)

Noting that we can express Equation (9) as
r* (z)pi () = p(x), we observe that if we matched
the first-order moments of the two sides of the equation
through the following minimization step, we can obtain an
approximation for the density-ratio:
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In practice, the expectations over pf. (z) and p, (z) in
Equation (11) are replaced by the sample means. However,
two distributions are equivalent if and only if all moments
agree with each other. Directly matching infinitely many
moments is not possible in reality, and although we can
choose a finite number of moments and match them, con-
sistency is not guaranteed with this approach. An alterna-
tive approach is to employ a universal reproducing kernel
K (z, 2/)(Steinwart, 2001) as a nonlinear transformation.
The Gaussian kernel:
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7 (x) = argmin

K (z,2') = exp (

is an example of universal reproducing kernels. Using
this kernel, mean matching leads to a consistent estimator
(Huang et al., 2007). In particular, we solve the following
minimization problem [8]:

7 (x) = argmin
reR

/K ) pe (z) do — /K
(13)

where R denotes a universal reproducing kernel Hilbert
space, and ||-||, denotes its norm. The empirical form of
Equation (13), using the test and training samples, is ex-
pressed as:

R . 1 2
z:a%mncﬁfgﬂg— K L), (9
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where 1,, is a nie-dimensional vector of all ones, and K o«

and K denote the kernel Gram matrices defined by:
=tr,te

{éfrvfr}j,j/ =K (xtr L ') |:£tr7tei|j7i

The solution to Equation (14) can be analytically found
as:

- K (xtr &te) (15)
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Although the kernel method for density-ratio estimation
leads to a consistent estimator, one of its weaknesses is that
the parameter o2 in the Gaussian kernel of Equation (12) is
selected empirically for a given dataset. We observe that
the theoretical strengths and practical weaknesses of the
kernel method are shared by the kernel estimator for the
probability density functions themselves, as presented in
Equation (5). Though this connection between the two ker-
nel methods is not made explicit in the papers studied, the
methodology that leads from the optimization problem to
the kernel estimator is similar in both cases, and is inspired
by the desirable properties of universal reproducing kernels
for estimation.

We note that the kernel method outlined in this section
is one of many parametric and nonparametric density ratio
estimation methods. If there is a model for the probability
density-ratio, then maximum likelihood estimation can be
used to determine the sufficient statistics that characterize
the density-ratio distribution. These direct density-ratio es-
timation methods still perform poorly when the dimension-
ality of the data domain is high. A framework of direct
density-ratio estimation with dimensionality reduction was
introduced in [9]. The basic idea is to find a subspace in
which the numerator and denominator densities are signifi-
cantly different, and then carry out density-ratio estimation
only within this subspace. It is noted, however, that these
techniques are still largely heuristic ones, and have to be
finely tuned to the given problem setting.

3 AUGMENTATION OF THE ERM ALGORITHM FOR
COVARIATE SHIFT ADAPTATION

Having outlined several methods for density-ratio estima-
tion, we now use the ratio estimate obtained for each

training sample to augment the standard formulation of the
ERM algorithm, stated as:

Nir
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where [ (z, z') is a loss function of our choosing. If a
covariate shift is present, and if the model we are assuming
is incorrectly specified, then éERM may not converge to
the true parameter 0* as ny — oo [2]. A useful method
for ensuring this convergence is importance weighting, in
which we assign a larger weight to the training samples
which are more representative of the data set. We make use
of the following identity [10]:

Eplg(X)]=)_ P(x)g()

zeX

Sopr
zeX
_g. [PX) ]
Eq {Q(X)Q(X) :
where P and () are probability distributions with the same
support. When we apply the identity in Equation (18) to our
learning framework, we obtain:

g(z)

(18)

Em‘ew ez &te = Ea:"fv ez [ gtr pre (:C):| (19)
aeri(@) 9 ()] = Brenpya |9/ (27) 50

We observe that, by weighting the expectation of g (z)
over the training samples with the correct probability
density-ratio, we get a result that is equal to the expectation
over the test samples, which we have yet to observe. We
apply the importance weighting as stated in Equation (19)
to the formulation of the ERM algorithm in Equation (17) to
obtain an algorithm called importance-weighted ERM [11]:

N _ : i S p:ce (ggr) > K tr tr
Orwerm = arg;mn [ntr ; (Pikr (") L(f (2, 0),u")],
(20)

where 0 <~ < 1is a parameter that controls the weighting
of the samples, with v = 0 corresponding to the case of the
standard ERM algorithm.

To observe how importance weighting helps mitigate
a covariate shift, we consider two examples given in [11],
where perfect knowledge of the density-ratio is assumed,
and the training and test data distributions are Gaussians
centered in different locations - thus making our problem
similar to extrapolation. We first consider the case of a linear
approximation to the true function f* (z) = sinc (x) with
mean-squared error, yielding the problem setting:

l(@, y):(g_y)Q’ f(x79):01x+92
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The solution to this minimization problem can be found
through weighted least-squares fitting. We perform simu-
lations with ny = ne = 150, using the training and test

probability distributions given by:

P (@) = N ( 1, (;)) ph(@) =N <a« 2, (i))

(22)
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The data and training distributions are centered around
different regions, so that if we wish to get an accurate
fit for the data, we need to extrapolate. The importance-
weighting yields the correct extrapolation within a learning
framework. We observe this in Figure 1, where we plot
the training and data points to observe how importance-
weighted ERM fits the data points much better than the
standard least-squares solution that is equivalent to the
ERM algorithm. The importance-weighting minimizes the
contributions of the training points that are farther away
from the test distribution, so that the linear fit is close to one
on the data points that we care to classify well. We quantify
this improvement in Table 1, from which we observe that the
ERM and IWERM algorithms perform well on the training
and test distributions, respectively.
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Fig. 1. Regression problem with weighted least squares solution.

TABLE 1
Mean-squared error for 100 regression trials.

[ Training, LS [ Test, LS [ Training, WLS | Test, WLS ]
0085 | 0249 | 0474 | 005/ |

For our second example, we consider a linear classifica-
tion problem on noisy samples in R?, with 0-1 loss. For a
general linear model, we have the estimator expressed as:

d

Flz 0) =00+ 0z,

i=1

(23)

The analytical solution to the IWERM algorithm in Equa-
tion (20) with the linear estimator in Equation(23) is given
by:

famis = (X"D7X) " XTDy, 4)
where we have:
1 af
X = S (25)
1 2!
Di,i _ Pre (gz) (26)

P ()

The classification result of a sample point z is given by
the sign of the output of the learned function:

i = sgn (f (Z; éAIWLS)) (27)



We consider a noisy sample setting where the condi-
tional probabilities of the labels y given the sample points =
are given by:

1+ tanh (Q(l) + min (0, Q(Q)))
5 )

ply=1]z)= (28)

ply=—-1]z)=1-p(y=1]|2) (29)

On the z® versus z() plane in R2, the optimal decision-
making boundary p(y=1|2) = p(y=—1|z) for these
distributions is 2 = —z® for z™) > 0, and z*) = 0 for
2(?) > 0. The training and test probability distributions are
given by:

sia-o(e [ b Peinl b 9

st 3] b Dot 3B 1)

These distributions each consist of two Gaussian ran-
dom variables, centered on opposite sides of the optimal
decision-making boundary.

We conduct our simulations with v = 0.5, observing
that v = 1 can yield an unstable estimator with a positive
slope that misses the test distribution. This observed in the
original paper [11], where a regularization parameter \ is
introduced to make the IWERM algorithm more stable at the
expense of introducing a second parameter to be optimized
for a given setting. In Figure 2 and the corresponding Table
2, we observe that for ny = ne = 250, the ERM algorithm
obtains a result close to the optimal boundary for the train-
ing set, while the IWERM algorithm is sufficiently biased
to correctly classify the majority of data zeros. IWERM
cannot approach the optimal boundary for the test sample
set, because the probability distributions are not sufficiently
close along the y-coordinate to obtain the correct y-intercept.

— Optimal boundary
IWERM boundary | ]
ERM boundary
Training zeros
Data zeros
Training ones
Data ones
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Fig. 2. Classification problem with weighted least squares solution, n =
250.

A key issue with the IWERM algorithm is illustrated by
repeating this classification experiment with ng = ne =
500, as illustrated in Figure 3 and the corresponding Table
3. In this case, the importance-weighting with the same
parameters is not strong enough to move the IWERM
boundary sufficiently far towards the data set - a stronger

TABLE 2
Mean-squared error for 100 classification trials, n = 250.

[ Tr, LS [ Te, LS [ Tr, WLS [ Te, WLS [ Tr, Best [ Te, Best ]
(0268 | 0365 | 038 | 0172 | 0267 | 0159 |

bias is required. As a result, the performance on test data
is poorer compared to the previous case with 250 samples,
contradicting the general assumption that an increase in the
number of training samples would directly lead to better
performance on test data. In the literature, these parameters
are optimized by exhaustive searching for a given setting,
which is feasible for the example analyzed here, but may
not be the case for a larger and higher-dimensional dataset.
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Fig. 3. Classification problem with weighted least squares solution, n =
500.

TABLE 3
Mean-squared error for 100 classification trials, n = 500.

[ T, LS [ Te, LS | Tr, WLS [ Te, WLS [ Tr, Best [ Te, Best |
(0266 | 0381 | 0267 | 0379 | 0266 | 0162 |

4 CONCLUSIONS

In this report, we questioned the common assumption that
the training and test samples of a learning problem are
drawn from the same probability distribution, and consid-
ered methods of augmenting the ERM algorithm to compen-
sate for this setting. Researching well-established methods
for density estimation, we noted that this task is generally
harder to solve than the classical learning problem, so
that most learning algorithms only make implicit use of
probability densities. Density-ratio estimation, though still
a difficult problem, is more general and therefore easier
than direct density estimation. We reviewed the moment-
matching method for density-ratio estimation, which is non-
parametric except for kernel size selection and operates
directly on the training and data samples. Assuming that
the density-ratio has been perfectly estimated, we presented
the IWERM algorithm that improved upon ERM under a
covariate shift. We verified this claim by simulating simple
regression and classification problems.

It is observed that while covariate shift adaptation leads
to better performance on the test samples given an accu-
rate density ratio, the method is not robust and does not



automatically lead to good results, even for the basic classi-
fication example we have provided. Most significantly, the
performance is strongly dependent on the number of sam-
ples, the particular training and data distributions, and the
parameters A and v introduced to tune the ERM algorithm.
In a practical higher-dimensional setting where the density
ratio is unknown and has to be estimated, we can expect
performance and stability to decline further. Density-ratio
estimation for machine learning applications clearly remains
an open problem, and although performance improvement
is demonstrated on practical datasets, more work needs
to be done to provide robustness and generalizability. The
literature on probability density estimation is vast and
widely applicable, and the brief exposure presented in this
report encourages research in this field from an electrical
engineering standpoint.
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